Reducing Complexness of Control by Intelligent Mechanics in Undulant Swimming Robots

نویسنده

  • M. FREMEREY
چکیده

This article introduces a biologically inspired modular swimming robot. Due to defi ned interfaces in mass, energy, and information fl ux, the robot’s swimming behavior is changeable: an undulant, successive called anguilliform as well as a thunniform swimming mode is adjustable. Unlike the current state of the art, the robot comes with specifi c designed mechanics for the reduction of the complexity of software-sided control. Thereby, the number of actuators required for propulsion is reduced to the minimum number of one. Currently the prototype robot consists of a basic structure generating amongst others the required torque and several effector modules. The locomotion mode is switchable depending on the number of effector modules. Thereby, the latest anguilliform setup contains three effector modules. The current thunniform confi guration features one effector module. The effector modules are mechanically coupled with a manually tunable compliant joint. Optimum values concerning spring stiffness subjected to the location of the joint within the robot are evaluated by simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots

This paper presents a new intelligent method to control rehabilitation robots by mainly considering reactions of patient instead of doing a repetitive preprogrammed movement. It generates a general reference trajectory based on different reactions of patient during therapy. Three main reactions has been identified and included in reference trajectory: small variations, force shocks in a single ...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

Nurse Robots: A Necessity in the Nursing Care System during the Covid-19 Pandemic

Dear Editor, The emergence of diseases due to drug resistance, genetic mutations, and transmission has made the future of infectious diseases complicated and vague. Currently, the prevalence of coronavirus, with high infectivity and significant lethality, has made infection control among nurses and patient one of the main goals of the World Health Organization [1]. At present, the prevention ...

متن کامل

Stiffness control of a legged robot equipped with a serial manipulator in stance phase

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...

متن کامل

Emotional Learning Based Intelligent Controller for MIMO Peripheral Milling Process

During the milling process, one of the most important factors in reducing tool life expectancy and quality of workpiece is the chattering phenomenon due to self-excitation. The milling process is considered as a MIMO strongly coupled nonlinear plant with time delay terms in cutting forces. We stabilize the plant using two independent Emotional Learning-based Intelligent Controller (ELIC) in par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012